Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 25, 2026
- 
            Abstract In the present study we investigate the response of the dayside ground magnetic field to the sequence of interplanetary magnetic field (IMF)BYchanges during the May 2024 geomagnetic storm. We pay particular attention to its extraordinarily large (>120 nT) and abrupt flip, and use GOES‐18 (G18) magnetic field measurements in the dayside magnetosheath as a time reference. In the dayside auroral zone, the northward magnetic component changed by as much as 4,300 nT from negative to positive indicating that the direction of the auroral electrojet changed from westward to eastward. The overall sequence was consistent with the conventional understanding of the IMFBYdriving of zonal ionospheric flows and Hall currents, which is also confirmed by a global simulation conducted for this storm. Surprisingly, however, the time delay from G18 to the ground increased significantly in time. The delay was 2–3 min for a sharpBYreduction ∼30 min prior to theBYflip, but it became as long as 10 min for the zero‐crossing of theBYflip. It is suggested that the prolonged time delay reflected the travel time from G18 to the reconnection site, which sensitively depends on the final velocity at the magnetopause, that is, the inflow velocity of the magnetic reconnection. Around theBYflip, the solar wind number density transiently exceeded 100 cm−3, and should have increased further through the bow shock crossing. It is suggested that this unusually dense plasma reduced the reconnection rate, and therefore, the solar wind‐magnetosphere energy coupling due to the extraordinary IMF.more » « less
- 
            Abstract We comprehensively analyzed geomagnetic perturbations using ground magnetic records from over 400 stations spanning four solar cycles, from 1976 to 2023. We assess the perturbations in the three magnetic components separately. Our study covers low, middle, and high magnetic latitudes in the northern magnetic hemisphere, with the primary objective of quantifying extreme values and evaluating their variability on magnetic latitude, local time, and solar cycle phases “minimum, ascending, maximum, and declining.” Our findings reveal spatial patterns to be less discernible as perturbations intensify, with distinct responses at middle and high latitudes. The extreme values, defined as percentiles 0 and 100, were observed to be localized and randomly distributed in local time, especially in the east magnetic component. Additionally, we observed dusk‐dawn asymmetries in the magnitude of perturbations related to the auroral electrojets, indicating complex interactions between the magnetosphere and ionosphere. Furthermore, the results reveal a preference for the most significant extreme values to occur in the declining phase of the solar cycle. These insights deepen our understanding of geomagnetic perturbations and their variability, contributing to space weather forecasting and mitigation strategies.more » « less
- 
            null (Ed.)Increasingly, icons are being proposed to concisely convey privacyrelated information and choices to users. However, complex privacy concepts can be difcult to communicate. We investigate which icons efectively signal the presence of privacy choices. In a series of user studies, we designed and evaluated icons and accompanying textual descriptions (link texts) conveying choice, opting-out, and sale of personal information — the latter an opt-out mandated by the California Consumer Privacy Act (CCPA). We identifed icon-link text pairings that conveyed the presence of privacy choices without creating misconceptions, with a blue stylized toggle icon paired with “Privacy Options” performing best. The two CCPA-mandated link texts (“Do Not Sell My Personal Information” and “Do Not Sell My Info”) accurately communicated the presence of do-notsell opt-outs with most icons. Our results provide insights for the design of privacy choice indicators and highlight the necessity of incorporating user testing into policy making.more » « less
- 
            Abstract Embedded Region 1 and 2 field‐aligned currents (FACs), intense FAC layers of mesoscale latitudinal width near the interface between large‐scale Region 1 and Region 2 FACs, are related to dramatic phenomena in the ionosphere such as discrete arcs, inverted‐V precipitation, and dawnside auroral polarization streams. These relationships suggest that the embedded FACs are potentially important for understanding ionospheric heating and magnetosphere‐ionosphere (M‐I) coupling and instabilities. Previous case studies of embedded FACs have led to the speculation that they may result from enhanced M‐I convection during active times. To explore this idea further, we investigate statistically their occurrence rates under a variety of geomagnetic conditions with a large event list constructed from 17 years of Defense Meteorological Satellite Program observations. The identification procedure is fully automated and explicit. The statistical results indicate that embedded Region 1 and 2 FACs are common, and that they have a higher chance to occur when the level of geomagnetic activity is higher (given by various indices), supporting the idea that they result from enhanced M‐I convection.more » « less
- 
            Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.more » « less
- 
            Abstract Polar cap ionospheric plasma flow studies often focus on large‐scale averaged properties and neglect the mesoscale component. However, recent studies have shown that mesoscale flows are often found to be collocated with airglow patches. These mesoscale flows are typically a few hundred meters per second faster than the large‐scale background and are associated with major auroral intensifications when they reach the poleward boundary of the nightside auroral oval. Patches often also contain ionospheric signatures of enhanced field‐aligned currents and localized electron flux enhancements, indicating that patches are associated with magnetosphere‐ionosphere coupling on open field lines. However, magnetospheric measurements of this coupling are lacking, and it has not been understood what the magnetospheric signatures of patches on open field lines are. The work presented here explores the magnetospheric counterpart of patches and the role these structures have in plasma transport across the open field‐line region in the magnetosphere. Using red‐line emission measurements from the Resolute Bay Optical Mesosphere Thermosphere Imager, and magnetospheric measurements made by the Cluster spacecraft, conjugate events from 2005 to 2009 show that lobe measurements on field lines connected to patches display (1) electric field enhancements, (2) Region 1 sense field‐aligned currents, (3) field‐aligned enhancements in soft electron flux, (4) downward Poynting fluxes, and (5) in some cases enhancements in ion flux, including ion outflows. These observations indicate that patches highlight a localized fast flow channel system that is driven by the magnetosphere and propagates from the dayside to the nightside, most likely being initiated by enhanced localized dayside reconnection.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available